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AbslracL The results of calculations of the static s,mcIure factor S(q) for liquid 3d 
transition metals are presented. These have been studied using effective inter-ionic pair 
potentials, proposed by two of the authors (JLB and MS), that mmbine the emptycore 
model used to describe the nearly-[ree.elactron band and a d-band contribution deduced 
via an inverse scattering approach. They have potenlial wells that are shallower and 
shifted towards the larger values of 7 than the corresponding Wills-Hanison potentials 
used by other authors. The fluid aspects are modelled through a charged hard-sphere 
reference system optimized via the Gibbs-Bogoliubov variational scheme. 

The resulls for S(q) agree reasonably well with the available experimental data. The 
optimized values found for the hard-sphere diameters reveal that the ions never sample 
the hard cores, confirming earlier findings on the need to use a soft-core reference 
system for liquid transition metals. 

1. Introduction 

In earlier studies we have applied the Gibbs-Bogoliubov (GB) variational scheme with 
a hard-sphere (HS) fluid chosen as the reference system to the three series of liquid 
transition metals (Aryasetiawan et al 1986, Bretonnet and Derouiche 1991 (BD)). In 
the first paper the effective Hamiltonian for the ions is based on a semiempirical tight- 
binding model originally proposed by DucasteUe (1970). The effective Hamiltonian 
in the second paper is based on a first-principles study by Wills and Harrison (1983) 
(wH), which uses separate treatments for the s-p and the d states leading to an 
effective pair potential that also takes into account the effect of s-d hybridization. 

A similar study to that of BD was carried out by Hausleitner and Hafner (1988) 
using a modified wH potential with a hard-sphere Yukawa (HSY) reference fluid. 
These authors have shown that the HSY fluid yields a better variational upper bound 
to the Helmholtz free energy than the HS reference fluid, suggesting that a soft-core 
reference system is more appropriate for liquid transition metals. 

Regnaut (1989) has also used the WH potential to cany out an analysis of the 
Structure of the 3d liquid transition metals by means of the so-called WCAORPA 
perturbation theory (see Andersen et al 1976). He finds that the predictions of the 
WH potential depend critically on the cancellation between the two large repulsive 
and attractive contributions. Specifically, Regnaut finds that the purely repulsive WCA 
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scheme leads to results that are similar to those obtained with the HSY reference 
fluid. However, incorporating the attractive, mainly d-band, contribution via ORPA 
fails to produce results for the early 3d elements as the structure factor diverges in 
the long-wavelength limit. 

Regnaut’s findings were confirmed by the recent work of Hausleitner er nf (1991), 
who have shown that modern thermodynamically self-consistent integral equation 
theories of liquids also lead to similar difficulties to those of the WCA-ORPA in de- 
scribing the structure of transition metals with half-filled and less than half-filled d 
bands. Moreover, their molecular dynamics simulations using a modified WH poten- 
tial fail to produce reasonable results for liquid Ti and V. It appears that the root 
of the problem is the very deep potential well predicted by the WH potential for its 
first minimum and its position. Hausleitner el a1 (1991) concluded that improvements 
in the description of the structure of Liquid transition metals require a shallower 
potential well shifted towards a larger value of T than that predicted by WH. 

The preceding results have encouraged us to develop a new simple effective 
interaction for transition metals which possesses the correct attributes for a good 
description of the liquid structure (Bretonnet and Silbert 1991) and through which 
we intend to carry out a systematic study of the properties of liquid transition metals. 

In this paper we report the results of the GB variational scheme with a charged 
hard-sphere (CHS) reference system. This system is essentially the same as the one- 
component plasma (OCP) model except that it includes the size effect of the positive 
ions interacting via a Coulomb potential in a uniform background of negative charge. 
The OCP has been used by Khanna and Cyrot-Lackmann (1979) and Chaturvedi er af 
(1981a, b, c) to describe the structure of liquid transition metals as well as by Itami 
and Shimoji (1984) and by Itoh et a1 (1986) to study their thermodynamic properties. 
In our work we appeal to the analytic solution obtained by Palmer and Weeb (1973) 
for the CHS system in the mean spherical approximation. 

In the next section we describe the GB variational scheme as used in this work. 
In section 3 we present the results of our calculation for the 36 transition series and 
we show that the use of our potential yields reasonably good agreement with the 
experimental structure Finally, we complete the  paper with a brief discussion of our 
results. 
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2. The Gibbs-Bogoliubov variational scheme 

Assuming that the effective Hamiltonian X for the ions may be written as the sum 
of the Hamiltonian of the reference system IfCHS, which in our case is a CHS system, 
plus the rest of the effective Hamiltonian then the GB inequality states that the 
Helmholtz free energy F of the system is given by 

F < FCHS + ( H  - HCHS),,, 

where FCHS denotes the free energy of the reference system and the brackets a 
canonical ensemble average over the reference system. 

Equation (2.1) may be simplified by considering only the structure-dependent part 
of the free energy, F,, which may now be written as 

F. 4 FFHS(~)  + + Eb.(11) (2.2) 
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where EM and Ebs are the Madelung and band structure energies, respectively, 
calculated by using the CHS structure factor. The packing fraction r )  is chosen as the 
variational parameter. 

F2HS is obtained hy integrating the excess internal energy UCHS(.q) as given in 
Palmer and Weeks (1973). namely 

U C H S ( q ) / k , T  = - (1 /24~){(1  + q - iq2)1C2 

(2.3) 2 112 + ( 1  + z w l i  - ( 1  + [2(1- d3w1 + 277) I )  11. 
At a given temperature T and number density p, q = rrpu3/6 where U is the 

hard-sphere diameter. In addition, for this system, the Debye-Huckel inverse length 
IC is given by 

IC = (24qPZ:e2/a)112 (2.4) 

where 0 = (k,T)-I and Z,e is the ionic charge. FFHS is given by 

when the CarnahanStarling (1969) equation is used for the neutral hard-sphere 
system. 

In equation (2.2) we adopt the procedure in appendix 1 to calculate EM(q), so 
that 

The structure factor SCHS(q; q) may be written in terms of the Fourier transform 
of the Orstein-Zernike direct correlation function 

S C H S ( q ;  7 1 )  = 1/[1 - pZCHS(q;  q ) ]  (2.7) 

where pZCHS(q; q), in the mean spherical approximation, may be written in closed 
form (for the argument Q) as 

6 

p Z C H S ( Q ; q )  = % E A , J , ( Q ) .  
r = 1  

Explicit expressions for the coefficients A; and the functions J i ( Q )  of the dimen- 
sionless variable Q = qu are given in appendix 2. We note that equations (2.5) and 
(28) reduce to the corresponding HS expressions on taking the limit I<. = 0. 

The band structure energy Eb,(q)  is written as 
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where FN(q) is the normalized energy-wavenumber characteristic 

J L Bretonnet et al 

2 2  2 FN(d = (q2/4npZ,e ) w d d  (1 - l/ds))ll- G(dI-'. (2.10) 

In equation (2.10) wo(q)  denotes the form factor, which is derived from our model 
potential. As with the WH potential, we use separate treatments for the s-p and 
the d states The former are treated within the empty-core model potential. The 
latter are obtained by using an inverse scattering approach (Bretonnet and Silbert 
1991). Actually there are several methods available for deducing potentials from the 
knowledge of the elastic scattering phaseshifts (see Marchenko 1963). We have used 
the distorted plane-wave method developed by Swan (1967) (see also Oli 1988) in 
which the potential inside the core radius R, is expanded as a finite Dirichlet series 
of short-range functions. A good estimate of the potential is obtained by retaining 
only the first two t e m  of the series In addition, we require the potential and its 
first derivative to be continuous at T = R,. The resulting form factor is 

wo(q) = 4rpa3 [BiHi(q)/( l+ a Q ) + 8BzH?(q)/(l + 4a P 1 J 2 2 2  2 2 2  

- (4npZ,ez/q2) cos(qR,) (2.11) 

where 

8, = (z ,e*/Rc)( l  - 2 a l R , ) e x ~ ( R , / a )  

B, = ( 2 ~ , e ~ / R , ) ( a / R , -  l )exp(Rc/2a)  

and 

H , ( q )  = 2 - e x p ( - R C / n a ) [ ( ( R , / n a ) ( l  +n2a2q2)+(1  -n2a2q2)) 
2 2 2  x S i d q R , ) / n a q + ( 2 +  (R,/na)(l+ n a q ))co4qRc)1 

where the parameter e is a measure of the softness of the repulsive potential. 
The dielectric screening function c ( q )  is given by 

c ( n )  = 1 - (4*e2/n2)x(s)P - G(q)l (2.12) 

where x(q) is the Lmdhard function and G(q) is the local-field correction taken 
from Ichimaru and Utsumi (1981). 

We now turn to the choice of parametrization and the presentation of the results. 

3. Results 

In order to carry out the minimization procedure the parameters Z,, R, and a must 
be specified. For the number of free electrons we take the non-integer value 2, = 1.2 
for all the elements in the 36 series. This falls within the range of values that are 
acceptable according to Moriarty (1990). A non-integer 2, > 1 value is assumed to 
include the effect of s-d hybridization (Itami and Shimoji 1984). 

The form factor given by equation (2.11) and its related effective pair potential 
are fairly insensitive to changes in the core radius R,. A compilation of the ratio 



Gibbs-Bogoliubov calculatwns for 3d Irunsitwn metah 5363 

RJr,,, for a large number of liquid metals, shows that it spans the narrow range 0.47- 
052. Therefore we assume that R, = r0/2 for all the elements in this study, where 
ro (rz = 3/47rp) is the WignerSeitz radius. This choice of R, is also consistent 
with the approximate relationship given by Hafner and Ileine (1983), 

D - 2Rc + 2ATF (3.1) 

where D is the repulsive core diameter and A,, is the Thomas-Fermi screening 
radius. 

For the remaining parameter a we adopt the following procedure. We adjust the 
low-q region of the structure factor calculated within the random-phase approximation 
(RPA) to  the experimental data. The RPA Structure factor is given by 

where 

cSdd = -(4rz:e2/qa)~d4 

is the eiectronidiy screened interaction between the ions. 

ture factor 

[SRpA(0)]-' = 1 - 24)7(A1/3 + Az/4 + AJ5 + A4/6  + A 5 / 8 )  + A 6 / 2  

In the long-wavelength limit we have the following closed form for the RPA struc- 

+4rppZ:ez(Rt  - 2 P +  rh2/4me21if - yo/K;) (3.3) 

where 

p = (u3/zse2) [BiHi(O) -f 8BzHz(0)1 

and 
(see equation (4) in Ichimaru and Utsumi (1981)). 

is a dimensionless parameter obtained from the local-field correction G(q) 

Table 1. Input data for the variational calculations of the liquid 3d transition metals 
(columns 2 to 5): temperature, T;  nuimber density, p ;  core radius, Q; and the adjusted 
potential softness parameter, a (see text).  output results for the optimized packing 
fractions q (columns 6 and 8) and free energies F / k s T  (columns 1 and 9) using the 
CHS and HS reference systems. 

T (IC) 10-3p (au) R, (au) (1 (au) qCHS ( F , / k s T ) C H S  q H S  ( F , / ~ B T ) ~ ~  qs 

SE 1812 6.94 
73 1943 7.61 
V 2115 9.75 
Cr 2130 10.82 
Mn 1517 9.80 
Fe 1809 11.22 
CO 1168 11.69 
Ni 1126 11.84 

1.626 0301 0.418 
1.513 0.281 0.420 
1.452 0.267 0.415 
1.402 0.259 0.410 
1.449 0.216 0.418 
1.386 0.264 0.410 
1.367 0.260 0.412 
1.361 0.262 0.410 

-251.456 
-268.661 
-228.487 
-229.061 
-243.144 
-182.534 
-213.854 
-205,658 

0.452 -249.984 
0.455 -261.059 0.406 
0.445 -221.138 0.436 
0.445 -227.618 0.445 
0.445 -241.680 0.449 
0.435 - 181.602 0.398 
0.440 -212.612 0.408 
0.438 -204.508 0.396 
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Figure 1. Sialic Structure faclors S(q) for the liquid 3d transition metals: full curves, CHs 
results; squares, Hs mulls; crosses, experiment. Waseda (1981). The following elements 
were investigated; (a). Ti; (b). V; (c), Cr: (d). Mn; (e). Fe; U), CO; U), Ni. 

We now proceed with the variational scheme, as follows. The minimization pro- 
cedure is repeated for different values of the parameter a until SRpA(q)  reproduces 
the experimental data in the low-q regime. The values of the optimized packing frac. 
tions qCHS and the excess free energies (F,/lc,T)CHS thus obtained are presented 
in table 1, which also contains the relevant input data. We have also included in 
table 1 the values of the optimized packing fractions qHS and the excess energies 
(Fs//cBT)Hs obtained when using an HS reference system. 

We note that, in all cases, qCHS < qHS. This, as we shall see below, results in first 
peak heights of S(q) which, for our CHS reference system, are about 5% lower than 
those found experimentally. Similar trends were observed by Hausleitner and Hafner 
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(1988) when comparing their HSY reference system with the HS results, although they 
used a different model potential. 

The structuredependent free energy obtained by using the CHS reference system 
yields a lower variational upper bound than the HS reference fluid. Nonetheless, the 
differences between F2HS and Fys are small and of the same magnitude as found 
by Hausleitner and Hafner (1988) for the 3d liquid transition metals, and by Li et al 
(1986) for both the alkali and the polyvalent liquid simple metals, when the results 
of using the HSY and HS reference fluids are compared. 

We now turn to the structure factors for the 3d liquid transition metals, which are 
shown in figures l(u) to (g). Our SCHS(q) are compared with the x-ray experimental 
data of M e d a  (1981) and the HS results. According to experiment the height of the 
principal peak for the other systems in the 3d row does not change significantly from 
one element to another; the damping of the oscillations is less pronounced than in the 
alkalis thus reflecting a slightly harder repulsive potential. At a more detailed level a 
shift in the position of the principaI peak towards smaller q in Ti and y vis-&vis the 
other elements, cannot be explained simply by their large atomic volumes. However, 
Waseda (1981) states that the quality of the experimental data for the early elemenls 
in the 3d series is not as good as for the remainder of the series. 

The CHs calculations shift the position of the principal peak of S ( q )  towards 
smaller values of q-as compared with HS results-bringing the calculated results 
nearer to the experimental data for the elements in the middle of the 3d row. In 
contrast, no improvement with regard to the HS results is obsewed for both the early 
36 elements and for Ni. F6r the former the shift of S(q)  towards smaller q is not 
enough while for Ni it is too much. 

Meyer el ai (1984) and more recently Hausleitner and Hafner (1988) found that 
the best HSY fit to the experimental data is obtained when the value of the potential at 
the hard-core diameter, U( r = U ) ,  is several times the thermal energy k,T,  namely, 
when the hard core of the reference potential is never sampled. This suggests that the 
reference parameters reflect the relevant properties of the effective pair interaction. 
We find a similar trend when using the cHS reference system. The value of U(. = U )  

for our potential lies in the range 7-10 kBT as is shown for the typical elements Ti, 
Mn and Ni (respectively early, middle and late elements in the 3d row) in figure 2 
In our case u(u)/kBT = 9, 7.7 and 7 for Ti, Mn and Ni, respectively. 

Finally, we note that whereas the values of d and a differ from one element to 
another in the 36 series, the ratios a / r o  and u/ro  are nearly constant at 0.095 and 
1.52, respectively. This could indicate the existence of a universal scaling feature for 
the structure factors of liquid transition metals. We are currently checking whether 
similar trends are observed in the other transition-metal series. 

J L Bretonnet et ai 

4. Discussion 

During the past five or six years there have been a few systematic studies of the 
structure and thermodynamic properties of liquid transition metals. It is as if, all of a 
sudden, there is a realization amongst liquid metals theorists that the study of these 
systems has becomc a soluble problem. 

The published papers are attempts to probe either methods of liquid state theory 
and/or potentials borrowed from solid state studies-i.e., to probe approaches that 
have proved successful in the past. Slowly, from piecing together the modest findings 
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FQvm 2. Effective inter-ionic pair polenlials for liquids Ti (crosses), Mn (circles) and 
Ni (triangla). llte armw indicate the positions of the hard cores for each system. 

from each of these studies, a few important patterns are emerging as to what is 
needed to construct a good theory of liquid transition metals. This work only adds 
another page to this evolving story. 

The most important lesson emerging from these studies is that potentials that 
have been successful in solid state studies are not easily transferable to the liquid 
state. There are, roughly speaking, two classes of theories. Those like the WH, 
obtained from pseudopotential theory, and those deduced by Moriarty (1988, 1990) 
from density functional theory (generalized pseudopotential theory), yield potential 
wells which are too deep and whose minima are at relatively small values of T to 
cause major problems when used in conjunction with integral equation theories of 
liquids (see Hausleitner et al 1991). The many-body potentials of Finnis and Sinclair 
(1984) and Daw and Baskes (1984) produce the correct type of attractive painvise 
contributions, but there are difficulties when it comes to incorporating the repulsive 
contribution in a self-consistent manner, and also in trying to construct an effective 
pair interaction which takes care, albeit approximately, of the many-body contributions 
to the cohesive energy. Actually, it is remarkable that these two different approaches, 
leading to such different potentials, are equally successful in describing the same 
systems in the solid state. 

Whereas there is strong evidence that the contributions of multi-ion terms are 
necessary in the study of solid transition metals (Pettifor 1989), we believe that-at 
the very least as a practical proposition-progress in the understanding of their liquid 
state properties may only come by using effective pair potentials that take approximate 
amount of the important many-body contributions. The simple effective pair potential 
used in this work belongs to this category. Its first minimum is shallower, and at larger 
values of T ,  than the corresponding WH potential. 

The use of this potential, together with a CHS reference system, within the GB 
variational approach has shown that it yields the correct trends for the liquid structure. 
We are currently investigating the liquid structure by using the same potential and 
with an integral equation theory of liquids; preliminary results for the early 36 liquid 
transition metals are promising and will be reported on completion. 
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Appendix 1. Structure-dependent excess free energy 

With the CHS reference system, the CB inequality is 

F < FCHS(q)  t U ( p )  t $ p /  dr3gCHS(r;  q)[u(r) - uCHs(r;q)]. (AI) 

On adding and subtracting one to the integrand of equation (Al), and defining 

UcHs-(q) = $ p /  d31,~CHS(r;1))~CHS(r;q) 

and 

G ( q )  = / d3ru(r)e'q.' 

equation (Al) becomes 

F < F C H S ( q )  + U ( p )  + i.1 d3r[gCHS(r;q) - 1]u(r) 

+ + p q q  = 0 )  - U C H S ( 7 ) .  W )  
Using Parseval's theorem and the definition of the structure factor 

S(q) = 1 -I- p /  d 3 r [ g ( r )  - l]e'9'r 

the thud term on the right-hand side of (A2) is 

" 1  d3q[SCHS(q;7)-  l]ii(q). 
2 (2+ 

Since 

c(q) = (4vZze ' /q2 ) [1  - FN(y)]  

and defining 

E d n )  = -= 1 d3q(4nZ2ez/qz)SCHS(q;~)FN(q) 
and 

&(d = = / d3y [SCHS(q; q) - I] (4?rZ2eZ/q2)  - UCHS(q) 

the structure-dependent excess free energy F, is given by 

Fs < FsCHS(d + EbS(l)) + EM(7) 
while the remaining term is a volume-dependent contribution. 
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Appendix 2. Coefficients of the clts analytic solution for the Fourier transform of 
the direct correlation function, cmS(q) 

We quote below, for completeness, the expressions for the coefficients of the CHS 
Palmer and Weeks (1973) analytic solution of cCHS(q) given in equation (2.8): 

A, = - ( l + 2 q ) z / ( l - q ) 4 + R Z / 4 ( 1 - q ) 2 - ( l + q ) R f C / 1 2 q - ( 5 + ~ 2 ) K 2 / 6 0 q  

A, = 6 q M a  A, = $ICz A,  = $ q ( A  + K 2 U )  

A,  = & ~ K Z  A ,  = -riZ 
with 

~ = ~ i + 2 ~ 1  -?)I  [ 1 - ( 1 + 2 ( i - q ) ~ ~ ~ / ( 1 + 2 q ) ~ )  112 ] 
M = R 2 / 3 4 q - ( 1 t q / 2 ) / ( 1 - q ) 2  

U = - ( 1 / 1 2 q ) ( 1 + q - ~ z / 5 ) - ( R / 1 2 ~ K ) ( l - q ) .  

The quantities Ji( Q), which are functions of the dimensionless variable Q = qa, are 

.I,(&) = Q3(sin Q - Qsin Q )  

Jz(Q) = Q2[2QsinQ-(Q2-2)cosQ-2]  

J3(Q) = Q[(3Q?-6)sinQ-(Q2-6)QcosQ1 

J4(Q) = [ ( 4 Q 2 - 2 4 ) Q s i n Q - ( Q 4 - 1 2 Q 2 + 2 4 ) c o s Q + 2 4 ]  

J5(Q) = (1/Q2)[6(Q4 - 20Q’t  120)Qsin Q 

- (Q6 - 30Q4 t 360Q2 - 720) COS Q - 7201 

J6(Q) = (cosQ)/Q2. 
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